Two new tetranuclear μ_{4}-carbonato copper(ı) complexes. Syntheses, crystal structure and magnetic behaviour of $\left[\left(\mu_{4}-\mathrm{CO}_{3}\right)(\mu-\mathrm{Br})_{2}\left\{\mathrm{Cu}_{4^{-}}\right.\right.$ (bapa) $\left.\left.)_{4}\right]\right] \mathrm{Br}_{4}$ and $\left[\left(\mu_{4}-\mathrm{CO}_{3}\right)(\mu-\mathrm{Cl})_{2}\left\{\mathrm{Cu}_{4}(\text { bapma })_{4}\right\}\right] \mathrm{Cl}_{4} \cdot 12 \mathrm{H}_{2} \mathrm{O} \quad[$ bapa $=$ bis(aminopropyl)amine and bapma = bis(aminopropyl)methylamine]

A lbert E scuer, ${ }^{\text {a }}$ E varisto Peñalba, ${ }^{a}$ R amon Vicente, ${ }^{*, a} \mathbf{X}$ avier Solans ${ }^{\text {b }}$ and M ercé Font-B ardía ${ }^{\text {b }}$
${ }^{\text {a }}$ D epartament de Q uímica Inorgànica, U niversitat de B arcelona, D iagonal, 647, 08028-B arcelona, Spain
${ }^{\text {b }}$ D epartament de Cristal.lografia i M ineralogia, U niversitat de B arcelona, M artí Franqués s / n, 08028-B arcelona, Spain

The syntheses, by fixation of atmospheric CO_{2}, and the crystal structures of the new tetranuclear $\mu_{4}-\mathrm{CO}_{3}{ }^{2-}$ compounds $\left[\left(\mu_{4}-\mathrm{CO}_{3}\right)(\mu-\mathrm{Br})_{2}\left\{\mathrm{Cu}_{4}(\text { bapa })_{4}\right\}\right] \mathrm{Br}_{4} 1$ and $\left[\left(\mu_{4}-\mathrm{CO}_{3}\right)(\mu-\mathrm{Cl})_{2}\left\{\mathrm{Cu}_{4}(\text { bapma })_{4}\right\}\right] \mathrm{Cl}_{4} \cdot 12 \mathrm{H}_{2} \mathrm{O} 2$, [bapa and bapma are bis(3 -aminopropyl)amine and bis(3-aminopropyl)methylamine respectively] are reported. Crystallographic data for 1 space group $C 2 / c, a=14.928(5), b=19.010(3), c=17.337(4) \AA, \beta=92.75(4)^{\circ}, U=4914(2) \AA^{3}$ and $Z=4$, for $\mathbf{2}$ space group $P 2 / n, a=14.947(6), b=13.047(4), c=16.084(5) \AA, \beta=104.75(5)^{\circ}, U=3033(2) \AA^{3}$ and $Z=2$. The analogous compound $\left[\left(\mu-\mathrm{CO}_{3}\right)\left(\mu_{4}-\mathrm{Cl}\right)_{2}\left\{\mathrm{Cu}_{4}(\mathrm{bapa})_{4}\right\}\right] \mathrm{Cl}_{4} 3$ has been also prepared for comparative purposes; 1-3 show very strong antiferromagnetic coupling. A ccording to the molecular structures, the experimental data were fitted to the expression derived from the H amiltonian $\mathrm{H}=-2 \mathrm{~J}_{12} \mathrm{~S}_{1} \cdot \mathrm{~S}_{2}-2 \mathrm{~J}_{13}\left(\mathrm{~S}_{1} \cdot \mathrm{~S}_{3}+\mathrm{S}_{2} \mathrm{~S}_{4}\right)-2{ }_{14}{ }_{14}$ $\left(S_{1} \cdot S_{4}+S_{2} \cdot S_{3}\right)-2 J_{34} S_{3} \cdot S_{4}$, which corresponds to a rectangular array of spins. The best fit parameters were for 1-3 respectively: 2] $\left.{ }_{12}=-275(14),-390(12),-212(8) ; 2\right]_{34}=-31(4),-26(7),-26(3) ; 2{ }_{14}=-57(10),-10(12)$, $-72(9) ; 2{ }_{13}=-8(8), 22(10),-20(7) \mathrm{cm}^{-1} ; \mathrm{g}=2.03(1), 2.09(1)$ and $2.12(1)$.

The carbonate anion is a versatile bridging ligand, ${ }^{1}$ able to generate compounds with different nuclearity including dimers, ${ }^{2,3}$ trimers, ${ }^{4}$ tetramers, ${ }^{5}$ one ${ }^{6}$ or two-dimensional ${ }^{7}$ systems. The co-ordination modes described to date for the carbonate ion when it acts as a bridge in polynuclear compounds with nuclearities greater than two are summarized in Fig. 1. In spite of this general interest, there has been no report of a systematic study of procedures for the synthesis of different nuclearities. From the magnetic point of view, the unusual range of magnetic behaviour than can be obtained as a function of the coordination of the bridging carbonato ligand should be pointed out: from strongly coupled, ${ }^{8,9}$ to moderate ${ }^{2 a}$ or weak ${ }^{45,6}$ antiferromagnetic compounds and even ferromagnetic ones. $2 \mathrm{e}, 4 \mathrm{a}, \mathrm{c}, \mathrm{e}$ F urthermore, themagnetochemistry of the μ-carbonato ligand is poorly described for nuclearities greater than two.

We have recently published the syntheses, based on the carbonate ligand generated from fixation of atmospheric CO_{2}, and the magnetic behaviour of the trinuclear $\mu_{3}-\mathrm{CO}_{3}{ }^{2-}$ systems [$\left(\mu_{3}-\right.$ $\left.\left.\mathrm{CO}_{3}\right)\left\{\mathrm{Cu}_{3}(\text { bapma })_{3}\left(\mathrm{ClO}_{4}\right)_{3}\right\}\right] \mathrm{ClO}_{4}{ }^{4 \mathrm{c}} \quad\left[\left(\mu_{3}-\mathrm{CO}_{3}\right)\left\{\mathrm{Ni}_{2}(\mathrm{dmpn})_{4}-\right.\right.$ $\left.\left.\left(\mathrm{H}_{2} \mathrm{O}\right)\right\} \mathrm{Ni}(\mathrm{dmpn})_{2}\left(\mathrm{H}_{2} \mathrm{O}\right)_{2}\right]\left[\mathrm{ClO}_{4}\right]_{4} \cdot \mathrm{H}_{2} \mathrm{O}$ and $\left[\left(\mu_{3}-\mathrm{CO}_{3}\right)\left\{\mathrm{Ni}_{3}-\right.\right.$ (bapma) $\left.\left.3_{3}(\mathrm{NCS})_{4}\right\}\right]^{4 \mathrm{~d}}[$ bapma $=$ bis $(3$-aminopropyl)methylamine, $\mathrm{dmpn}=2,2$-dimethylpropane-1,3-diamine]. With the aim of continuing the study of the synthetic methods and the magnetochemistry of the polynuclear derivatives of the carbonato ligand for nuclearities greater than two, this work is devoted to the tetranuclear $\mu_{4}-\mathrm{CO}_{3}{ }^{2-}$ systems $\left[\left(\mu_{4}-\mathrm{CO}_{3}\right)(\mu-\mathrm{Br})_{2}\left\{\mathrm{Cu}_{4}(\text { bapa })_{4}\right\}\right]$ $\mathrm{Br}_{4} 1$ [bapa $=$ bis(3-aminopropyl)amine $]$ and $\left[\left(\mu_{4}-\mathrm{CO}_{3}\right)(\mu-\mathrm{Cl})_{2}\right.$ $\left.\left\{\mathrm{Cu}_{4}(\text { bapma })_{4}\right\}\right] \mathrm{Cl}_{4} \cdot 12 \mathrm{H}_{2} \mathrm{O}$ 2. Complexes $\mathbf{1}$ and $\mathbf{2}$ are prepared by the fixation of atmospheric CO_{2} using copper(II) halides. The crystal structures of $\mathbf{1}$ and $\mathbf{2}$ reveal a rectangular arrangement of four copper(II) atoms with a central μ_{4}-carbonato bridge with Cl or Br atoms bridging the shorter sides of the rectangle. The tetranuclear nature of the product of the reaction between an aqueous solution of bapa with copper(II) chloride by fixation of atmospheric CO_{2} was suggested by Curtis et al. ${ }^{10}$ and structurally confirmed by Einstein and Willis ${ }^{5 a}$ for the analogous [$\left(\mu_{4}{ }^{-}\right.$

a

d

b

e

C

g

Fig. 1 Structurally characterized co-ordination modes of the carbonato bridge for nuclearities greater than two
$\left.\left.\mathrm{CO}_{3}\right)(\mu-\mathrm{Cl})_{2}\left\{\mathrm{Cu}_{4}(\text { bapa })_{4}\right\}\right] \mathrm{Cl}_{4} 3$, which has also been prepared by us in order to study its magnetic behaviour. The magnetic measurements for 1-3 show strong antiferromagnetic coupling due to the interaction of the copper atoms through four superexchange pathways. The experimental data were fitted to the expression derived from the Hamiltonian $\mathrm{H}=-2 \mathrm{~J}_{12}$ $\mathrm{S}_{1} \cdot \mathrm{~S}_{2}-2 \mathrm{~J}_{13}\left(\mathrm{~S}_{1} \cdot \mathrm{~S}_{3}+\mathrm{S}_{2} \cdot \mathrm{~S}_{4}\right)-2 J_{14}\left(\mathrm{~S}_{1} \cdot \mathrm{~S}_{4}+\mathrm{S}_{2} \cdot \mathrm{~S}_{3}\right)-2 J_{34} \mathrm{~S}_{3} \cdot \mathrm{~S}_{4}$, which corresponds to a rectangular array of spins.

Experimental

Synthesis

$\left[\left(\mu_{4}-\mathrm{CO}_{3}\right)(\mu-\mathrm{Br})_{2}\left\{\mathrm{Cu}_{4}(\text { bapa })_{4}\right\}\right] B r_{4}$ 1. To a solution of CuBr_{2}

Table 1 Crystallographic data for $\left.\left[\mu_{4}-\mathrm{CO}_{3}\right)(\mu-\mathrm{Br})_{2}\left\{\mathrm{Cu}_{4}(\text { bapa })_{4}\right\}\right] \mathrm{Br}_{4} 1$ and $\left[\left(\mu_{4}-\mathrm{CO}_{3}\right)(\mu-\mathrm{Cl})_{2}\left\{\mathrm{Cu}_{4}(\text { bapma })_{4}\right\}\right] \mathrm{Cl}_{4} \cdot 12 \mathrm{H}_{2} \mathrm{O} 2$

	1	2
Formula	$\mathrm{C}_{25} \mathrm{H}_{68} \mathrm{Br}_{6} \mathrm{Cu}_{4} \mathrm{~N}_{12} \mathrm{O}_{3}$	$\mathrm{C}_{29} \mathrm{H}_{100} \mathrm{Cl}_{6} \mathrm{Cu}_{4} \mathrm{~N}_{12} \mathrm{O}_{15}$
M	1318.53	1324.07
Crystal symmetry	M onoclinic	M onoclinic
Space group	C 2 /c	P $21 / n$
a/Å	14.928(5)	14.947(6)
b/Å	19.010(3)	13.047(4)
c/Å	17.337(4)	16.084(5)
$\beta{ }^{\circ}$	92.75(4)	104.75(3)
\cup / \AA^{3}	4914(2)	3033(2)
Z	4	2
T/K	239(1)	293(2)
$\mathrm{D}_{\mathrm{c}} / \mathrm{g} \mathrm{cm}^{-3}$	1.782	1.450
$\mu\left(\right.$ M o-K α)/cm ${ }^{-1}$	66.24	17.08
$\mathrm{R}^{\text {a }}$	0.0445	0.0555
$\mathrm{R}^{\prime 6}$	0.1081	0.1347

(10 mmol) and bis(3-aminopropyl)amine (10 mmol) in water ($50 \mathrm{~cm}^{3}$), NHEt_{2} (5 mmol) was added and maintained for 2 h with vigorous stirring. A fter three weeks blue crystals of $\mathbf{1}$, unstable when taken out of the solution at room temperature, were obtained (F ound: C, 21.6; $\mathrm{H}, 5.5 ; \mathrm{N}, 12.1$. Calc. for $\mathrm{C}_{25} \mathrm{H}_{68}{ }^{-}$ $\mathrm{Br}_{6} \mathrm{Cu}_{4} \mathrm{~N}_{12} \mathrm{O}_{3}$: C, 22.8; $\left.\mathrm{H}, 5.2 ; \mathrm{N}, 12.7 \%\right)$. For this reason the structure was determined at 239 K .
$\left[\left(\mu_{4}-\mathrm{CO}_{3}\right)(\mu-\mathrm{Cl})_{2}\left\{\mathrm{Cu}_{4}(\text { bapma })_{4}\right\}\right] \mathrm{Cl}_{4} \cdot 12 \mathrm{H}_{2} \mathbf{O}$ 2. To a solution of $\mathrm{CuCl}_{2}(10 \mathrm{mmol})$ and bis(3-aminopropyl)methylamine (10 $\mathrm{mmol})$ in water ($50 \mathrm{~cm}^{3}$), $\mathrm{N} \mathrm{HEt}_{2}(5 \mathrm{mmol})$ was added and maintained for 2 h with vigorous stirring. A fter two weeks blue crystals of 2, stable at room temperature, were obtained (F ound: C, 26.1; $\mathrm{H}, 7.2 ; \mathrm{N}, 12.6$. Calc. for $\mathrm{C}_{29} \mathrm{H}_{100} \mathrm{Cl}_{6} \mathrm{Cu}_{4} \mathrm{~N}_{12} \mathrm{O}_{15}$: $\mathrm{C}, 26.3$; H, 7.6; N, 12.7\%).
$\left[\left(\mu_{4}-\mathrm{CO}_{3}\right)(\mu-\mathrm{Cl})_{2}\left\{\mathrm{Cu}_{4}(\text { bapa })_{4}\right\}\right] \mathrm{Cl}_{4}$ 3. This compound was prepared as previously described, ${ }^{10}$ analytical data ($\mathrm{C}, \mathrm{H}, \mathrm{N}, \mathrm{Cl}$) were in agreement with the proposed formulae.

M agnetic measurements

M agnetic measurements were carried out on polycrystalline samples with a SQUID apparatus working in the range 2-300 K under a magnetic field of 0.3 T . Diamagnetic corrections were estimated from Pascal tables.

Crystal data collection and refinement

A nalyses on single prismatic blue crystals of $\left[\left(\mu_{4}-\mathrm{CO}_{3}\right)-\right.$ $\left.(\mu-\mathrm{Br})_{2}\left\{\mathrm{Cu}_{4}(\text { bapa })_{4}\right\}\right] \mathrm{Br}_{4} \mathbf{1}(0.1 \times 0.1 \times 0.2 \mathrm{~mm})$ and $\left[\left(\mu_{4}-\mathrm{CO}_{3}\right)-\right.$ $\left.(\mu-\mathrm{Cl})_{2}\left\{\mathrm{Cu}_{4}(\text { bapma) })_{4}\right\}\right] \mathrm{Cl}_{4} \cdot 12 \mathrm{H}_{2} \mathrm{O} 2(0.1 \times 0.1 \times 0.2 \mathrm{~mm})$ were carried out on an Enraf-N onius CAD4 X-ray diffractometer. Intensities were collected using the $\omega-2 \theta$ scan technique with graphite-monochromatized M o-K α radiation ($\lambda=0.71069 \AA$). A summary of the crystallographic data is reported in Table 1. U nit-cell parameters for $\mathbf{1}$ and $\mathbf{2}$ were determined from automatic centring of 25 reflections ($12<\theta<21^{\circ}$) and refined by the least-squares method. For 17053 reflections were measured in the range $1.74<\theta<29.97^{\circ}$, 2895 of which were assumed observed applying the condition $\mathrm{I}>2 \sigma(\mathrm{I})$. For 29206 reflections were measured in the range $2.04<\theta<29.97^{\circ}$, 5707 of which were assumed observed applying the condition $\mathrm{I}>2 \sigma(\mathrm{I})$. For $\mathbf{1}$ and $\mathbf{2}$ three reflections were measured every 2 h as orientation and intensity control; significant intensity decay was not observed. Lorentz, polarization and absorption corrections (ψ scans, for compound 1 only) ${ }^{11}$ were made.
The structures of $\mathbf{1}$ and $\mathbf{2}$ were solved by direct methods, using the SH ELXS computer program ${ }^{12}$ and refined by thefullmatrix least-squares method, with SH ELXL $93 .{ }^{13}$ The function
minimized was $\Sigma w\left|\left|F_{0}\right|^{2}-\left|F_{c}\right|^{2}\right|^{2}$, where $w=\left[\sigma^{2}(1)+(0.0639 P)^{2}\right]^{-1}$ and $P=\left(\left|F_{o}\right|^{2}+2 \mid \mathrm{F}_{\mathrm{c}}{ }^{2}\right) / 3$ for 1 and $\mathrm{w}=\left[\sigma^{2}(I)+(0.0797 \mathrm{P})^{2}\right.$ $+3.1803 P]^{-1}, P=\left(\left|F_{0}\right|^{2}+2\left|F_{c}\right|^{2}\right) / 3$ for 2. Values of f, f^{\prime} and $\mathrm{f}^{\prime \prime}$ were taken from ref. 14. The extinction coefficient was $0.0000(7)$ for $\mathbf{1}$ and $0.0043(4)$ for $\mathbf{2}$. For $\mathbf{1}$ the three 0 atoms of the carbonato group and for $\mathbf{2}$ the three 0 atoms of the carbonato group and the $\mathrm{Cl}(1)$ atom are disordered: an occupancy factor of 0.5 was assigned in accordance with the height of Fourier synthesis and the symmetry conditions. For 1 all the H atoms were computed and refined with an overall isotropic temperature factor using a riding model. The number of parameters refined was $237 . \mathrm{M}$ aximum shift/es.d. $=7.96$, mean shift/es.d. $=0.92$. M aximum and minimum peaks in the final difference synthesis were 0.722 and -0.616 e \AA^{-3}, respectively. For 246 H atoms were located from a difference synthesis and refined with an overall isotropic temperature factor. The number of parameters refined was 516. M aximum shift/es.d. $=0.57$, mean shift/es.d. $=0.04$. M aximum and minimum peaks in final difference synthesis were 0.658 and -0.428 e \AA^{-3}, respectively.
A tomic coordinates, thermal parameters, and bond lengths and angles have been deposited at the Cambridge Crystallographic Data Centre (CCDC). See Instructions for Authors, J. C hem. Soc., D alton Trans., 1997, Issue 1. A ny request to the CCDC for this material should quote the full literature citation and the reference number 186/523.

Results and Discussion

Syntheses

As mentioned above, we have recently published the synthesis and crystal structure of the trinuclear μ_{3}-carbonato system [μ_{3} $\left.\left.\mathrm{CO}_{3}\right)\left\{\mathrm{Cu}_{3}(\text { bapma })_{3}\left(\mathrm{ClO}_{4}\right)_{3}\right\}\right] \mathrm{ClO}_{4}{ }^{4 \mathrm{c}}$ The synthetic procedure, previously described by Curtis et. al. ${ }^{10}$ for the analogous [$\mu_{3^{-}}$ $\left.\left.\mathrm{CO}_{3}\right)\left\{\mathrm{Cu}_{3}(\mathrm{bapa})_{3}\left(\mathrm{ClO}_{4}\right)_{3}\right\}\right] \mathrm{ClO}_{4}$, is very similar to the one described here for the syntheses of the μ_{4}-carbonato complexes 1-3, but the starting copper(II) salt used to prepare the trinuclear compounds is the perchlorate instead of the copper(II) halide used in the preparation of the tetranuclear ones. Using the potentially tridentate base 2-[2-(2-pyridyl)ethyliminomethyl]pyridine (pip) and copper(II) nitrate, it is possible to obtain ${ }^{4 \mathrm{a}}$ another trinuclear μ_{3}-carbonato compound [$\left(\mu_{3}\right.$ $\left.\left.\mathrm{CO}_{3}\right)\left\{\mathrm{Cu}_{3}(\mathrm{pip})_{3}\left(\mathrm{H}_{2} \mathrm{O}\right)_{3}\right\}\right]\left[\mathrm{NO}_{3}\right]_{4}$. Consequently, the synthesis of copper(II)-carbonato derivatives with different nuclearities can be placed into two categories: using tridentate amine ligands (like bapa, bapma or pip), atmospheric CO_{2} or $\mathrm{K}_{2} \mathrm{CO}_{3}$ and copper(II) salts of poorly co-ordinative anions like nitrate or perchlorateleads to $\mu_{3}-\mathrm{CO}_{3}{ }^{2-}$ trinuclear copper(II) derivatives. In contrast, if copper(II) halides (chloride or bromide) are used the resulting compound is a μ_{4}-carbonato tetranuclear copper(II) derivative with two bridging halide ligands. There are two published exceptions to this rule: using the bulky tridentate ligands $\mathrm{N}, \mathrm{N}, \mathrm{N}^{\prime}, \mathrm{N} " \mathrm{~N} "$-pentaethyldiethylenetriamine (pedien) and 2,4, 4,7-tetramethyl-1,5,9-triazyclododec-1-ene (L) and copper(II) perchlorate, the dinuclear $\mu_{2}-\mathrm{CO}_{3}{ }^{2-}$ compounds. $\left[\left(\mu_{2}-\mathrm{CO}_{3}\right)-\right.$ $\left.\left.\left\{\mathrm{Cu}_{2} \text { (pedien) }\right)_{2}\right\}\right]\left[\mathrm{ClO}_{4}\right]_{2}{ }^{2 \mathrm{a}}$ and $\left[\left(\mu_{2}-\mathrm{CO}_{3}\right)\left\{\mathrm{Cu}_{2}(\mathrm{~L})_{2}\right\}\right]\left[\mathrm{ClO}_{4}\right]_{2} \cdot d \mathrm{dmf}$ $\left(\mathrm{dmf}=\right.$ dimethylformamide) ${ }^{8}$ are obtained rather than trinuclear μ_{3}-carbonato compounds. The bulky character of pedien and L could be the reason for this anomalous results.

Structures of compounds 1 and 2

The structure of these compounds is basically the same and consists of tetranuclear $\left[\left(\mu_{4}-\mathrm{CO}_{3}\right)(\mu-\mathrm{X})_{2}\left\{\mathrm{Cu}_{4}(\text { triamine })_{4}\right\}\right]^{4+}$ units, $\mathrm{X}=\mathrm{Cl}$ or Br for compounds $\mathbf{2}$ and $\mathbf{1}$ respectively, and four isolated halide counter anions. In 2 there also exist 12 water molecules. Labelled diagrams are shown in Figs. 2 and 3 for compounds $\mathbf{1}$ and $\mathbf{2}$ respectively. The main bond lengths and angles are presented in Table 2. The structure of each tetranuclear unit consists of four copper atoms placed at the corners of a rectangle with a μ_{4}-carbonate ligand in the centre (disordered

Fig. 2 An ORTEP ${ }^{15}$ drawing of the cation $\left[\left(\mu_{4}-\mathrm{CO}_{3}\right)(\mu-\mathrm{Br})_{2}\right.$ $\left.\left\{\mathrm{Cu}_{4}(\text { bapa })_{4}\right\}\right]^{4+}$ of compound 1 with atom labelling scheme

Fig. 3 An ORTEP drawing of the cation $\left[\left(\mu_{4}-\mathrm{CO}_{3}\right)(\mu-\right.$ $\left.\mathrm{Cl})_{2}\left\{\mathrm{Cu}_{4}(\text { bapma })_{4}\right\}\right]^{4+}$ of compound $\mathbf{2}$ with atom labelling scheme
in $\mathbf{1}$ and 2). The bridging halides are placed on the plane of the rectangle and perpendicular to the short edges. The carbonate acts as a tetradentate ligand: one oxygen atom bridges a pair of halide-bridged Cu atoms, forming a four-membered $\mathrm{Cu}-\mathrm{X}-\mathrm{Cu}-\mathrm{O}$ ring, while the other two oxygen atoms are linked to each of the remaining two Cu atoms, forming a sixmembered $\mathrm{Cu}-\mathrm{X}-\mathrm{Cu}-\mathrm{O}-\mathrm{C}-\mathrm{O}$ ring. One bapa or bapma ligand is mer co-ordinated to each copper atom making them five-coordinate.

There are two different average $\mathrm{C}-\mathrm{O}$ distances in the $\mu_{4}{ }^{-}$ carbonate ligand depending on whether the O atom bridges two Cu atoms or links to one Cu atom. In the first case the average $\mathrm{C}-\mathrm{O}$ distances are $1.416(8)$ and $1.472(4) \AA$ for $\mathbf{1}$ and $\mathbf{2}$ respectively. In the second case, the average $\mathrm{C}-\mathrm{O}$ distances are 1.195(11) and 1.211(5) \AA for $\mathbf{1}$ and $\mathbf{2}$ respectively. These values compare well with similar average $\mathrm{C}-\mathrm{O}$ distances in the analogous compound $\left[\left(\mu_{4} \mathrm{CO}_{3}\right)(\mu-\mathrm{Cl})_{2}\left\{\mathrm{Cu}_{4}(\text { bapa })_{4}\right\}\right] \mathrm{Cl}_{4} 3^{3 \mathrm{a}}$ which are $1.412(10) \AA$ for the four- and 1.224(10) \AA for the six-membered rings.

A sin the case of the $\mathrm{C}-\mathrm{O}$ distances, the related distances and angles for 1-3 compare well, with the obvious exception of the structural parameters involving the different halides. In 1, the $\mathrm{Cu}-\mathrm{Br}-\mathrm{Cu}$ average angle is $88.32(4)^{\circ}$ and the average $\mathrm{Cu}-\mathrm{Br}$ distance is $2.712(1) \AA$. In 2 , the $\mathrm{Cu}-\mathrm{Cl}-\mathrm{Cu}$ average angle is $94.3(1)^{\circ}$ and the $\mathrm{Cu}-\mathrm{Cl}$ average distance is $2.578(3) \AA$. In $3,{ }^{\text {5a }}$ the average $\mathrm{Cu}-\mathrm{Cl}-\mathrm{Cu}$ angle is $93.1(1)^{\circ}$ and the average $\mathrm{Cu}-\mathrm{Cl}$ distance is $2.532(2) \AA$.

Table 2 Selected bond lengths (\AA) and angles (${ }^{\circ}$) for $\left[\left(\mu_{4}-\mathrm{CO}_{3}\right)(\mu-\mathrm{Br})_{2}-\right.$ $\left.\left\{\mathrm{Cu}_{4}(\text { bapa })_{4}\right\}\right] \mathrm{Br}_{4} \mathrm{I}$ and $\left[\left(\mu_{4}-\mathrm{CO}_{3}\right)\left(\mu-\mathrm{Cl}_{2}\left\{\mathrm{Cu}_{4}(\text { bapma })_{4}\right\}\right] \mathrm{Cl}_{4} \cdot 12 \mathrm{H}_{2} \mathrm{O} 2\right.$

Compound 1			
$\mathrm{Cu}(1)-\mathrm{N}(13)$	2.015(5)	$\mathrm{Cu}(1)-\mathrm{N}(11)$	2.030(5)
$\mathrm{Cu}(1)-\mathrm{N}$ (12)	2.043(5)	$\mathrm{Cu}(1)-\mathrm{O}(1)$	2.032(10)
$\mathrm{Cu}(1)-\mathrm{O}(2)$	2.125(7)	$\mathrm{Cu}(1)-\mathrm{Br}(1)$	2.6994(14)
$\mathrm{Cu}(2)-\mathrm{N}$ (21)	2.001(4)	$\mathrm{Cu}(2)-\mathrm{N}$ (23)	2.025(5)
$\mathrm{Cu}(2)-\mathrm{N}$ (22)	2.065(5)	$\mathrm{Cu}(2)-\mathrm{O}(2)$	2.072(5)
$\mathrm{Cu}(2)-\mathrm{O}(3)$	2.158(12)	$\mathrm{Cu}(2)-\mathrm{Br}(1)$	2.7250 (13)
$\mathrm{C}(1)-\mathrm{O}(3)$	1.102(11)	$\mathrm{C}(1)-\mathrm{O}(1)$	1.288(10)
$\mathrm{C}(1)-\mathrm{O}(2)$	1.416(8)		
N (13)-Cu(1)-N (11)	152.5(2)	$\mathrm{N}(13)-\mathrm{Cu}(1)-\mathrm{N}(12)$	90.0(2)
N (11)-Cu(1)-N (12)	94.9(2)	$\mathrm{N}(13)-\mathrm{Cu}(1)-\mathrm{O}(1)$	82.9(3)
$\mathrm{N}(11)-\mathrm{Cu}(1)-\mathrm{O}(1)$	79.2(3)	$\mathrm{N}(12)-\mathrm{Cu}(1)-\mathrm{O}(1)$	149.4(3)
$\mathrm{N}(13)-\mathrm{Cu}(1)-\mathrm{O}(2)$	89.3(3)	$\mathrm{N}(11)-\mathrm{Cu}(1)-\mathrm{O}(2)$	92.7(3)
$\mathrm{N}(12)-\mathrm{Cu}(1)-\mathrm{O}(2)$	164.8(2)	$\mathrm{O}(1)-\mathrm{Cu}(1)-\mathrm{O}(2)$	45.3(3)
N (13)-Cu(1)-Br(1)	103.7(2)	$\mathrm{N}(11)-\mathrm{Cu}(1)-\mathrm{Br}(1)$	102.89(13)
$\mathrm{N}(12)-\mathrm{Cu}(1)-\mathrm{Br}(1)$	94.05(12)	$\mathrm{O}(1)-\mathrm{Cu}(1)-\mathrm{Br}(1)$	116.5(3)
$\mathrm{O}(2)-\mathrm{Cu}(1)-\mathrm{Br}(1)$	71.4(2)	$\mathrm{N}(21)-\mathrm{Cu}(2)-\mathrm{N}(23)$	151.8(2)
N (21)-Cu(2)-N(22)	92.8(2)	$\mathrm{N}(23)-\mathrm{Cu}(2)-\mathrm{N}(22)$	89.1(2)
$\mathrm{N}(21)-\mathrm{Cu}(2)-\mathrm{O}(2)$	94.3(3)	$\mathrm{N}(23)-\mathrm{Cu}(2)-\mathrm{O}(2)$	91.2(3)
$\mathrm{N}(22)-\mathrm{Cu}(2)-\mathrm{O}(2)$	164.4(3)	$\mathrm{N}(21)-\mathrm{Cu}(2)-\mathrm{O}(3)$	81.8(3)
$\mathrm{N}(23)-\mathrm{Cu}(2)-\mathrm{O}(3)$	84.5(3)	N (22)-Cu(2)-O(3)	154.4(3)
$\mathrm{O}(2)-\mathrm{Cu}(2)-\mathrm{O}(3)$	40.9(4)	$\mathrm{N}(21)-\mathrm{Cu}(2)-\mathrm{Br}(1)$	100.8(2)
$\mathrm{N}(23)-\mathrm{Cu}(2)-\mathrm{Br}(1)$	107.14(14)	$\mathrm{N}(22)-\mathrm{Cu}(2)-\mathrm{Br}(1)$	93.5(2)
$\mathrm{O}(2)-\mathrm{Cu}(2)-\mathrm{Br}(1)$	71.5(2)	$\mathrm{O}(3)-\mathrm{Cu}(2)-\mathrm{Br}(1)$	112.1(3)
$\mathrm{Cu}(1)-\mathrm{Br}(1)-\mathrm{Cu}(2)$	88.32(4)	$\mathrm{O}\left(3^{\mathbf{i}}\right)-\mathrm{C}(1)-\mathrm{O}\left(1^{\text {i }}\right.$)	143.3(6)
$\mathrm{O}(3)-\mathrm{C}(1)-\mathrm{O}(1)$	143.3(6)	$\mathrm{O}(3)-\mathrm{C}(1)-\mathrm{O}\left(2^{\text {i }}\right.$)	109.3(7)
$\mathrm{O}(1)-\mathrm{C}(1)-\mathrm{O}\left(2^{\text {i }}\right.$)	107.4(5)	$\mathrm{O}\left(3^{\text {i }}\right)-\mathrm{C}(1)-\mathrm{O}(2)$	109.3(7)
$\mathrm{O}\left(1^{\text {i }}\right)-\mathrm{C}(1)-\mathrm{O}(2)$	107.4(5)	$\mathrm{C}(1)-\mathrm{O}(1)-\mathrm{Cu}(1)$	127.7(7)
$\mathrm{C}(1)-\mathrm{O}(2)-\mathrm{Cu}(2)$	117.3(4)	$\mathrm{C}(1)-\mathrm{O}(2)-\mathrm{Cu}(1)$	114.2(4)
$\mathrm{Cu}(2)-\mathrm{O}(2)-\mathrm{Cu}(1)$	128.4(4)	$\mathrm{C}(1)-\mathrm{O}(3)-\mathrm{Cu}(2)$	131.1(9)
Compound 2			
$\mathrm{Cu}(1)-\mathrm{N}$ (3)	1.987(4)	$\mathrm{Cu}(1)-\mathrm{N}(2)$	2.067(3)
$\mathrm{Cu}(1)-\mathrm{N}(1)$	1.996(3)	$\left.\mathrm{Cu}(1)-\mathrm{O} 3^{\prime}\right)$	2.080(5)
$\mathrm{Cu}(1)-\mathrm{O}(1)$	2.047(4)	$\mathrm{Cu}(1)-\mathrm{Cl}(1)$	2.376(2)
$\mathrm{Cu}(2)-\mathrm{N}(6)$	1.980(2)	$\mathrm{Cu}(2)-\mathrm{N}(5)$	2.078(3)
$\mathrm{Cu}(2)-\mathrm{N}(4)$	1.992(4)	$\mathrm{Cu}(2)-\mathrm{O}(1)$	2.089(4)
$\mathrm{Cu}(2)-\mathrm{O}\left(2^{\prime}\right)$	2.065(6)	$\mathrm{Cu}(2)-\mathrm{Cl}(1)$	2.342 (3)
$\mathrm{C}(1)-0(1)$	1.472(4)	$\mathrm{C}(1)-\mathrm{O}(2)$	1.232(5)
$\mathrm{C}(1)-0(3)$	1.190(5)		
$\mathrm{N}(3)-\mathrm{Cu}(1)-\mathrm{N}(1)$	155.5(2)	$\mathrm{N}(3)-\mathrm{Cu}(1)-\mathrm{O}(1)$	92.6(2)
$\mathrm{N}(1)-\mathrm{Cu}(1)-\mathrm{O}(1)$	89.7(2)	$\mathrm{N}(3)-\mathrm{Cu}(1)-\mathrm{N}(2)$	91.71(13)
$\mathrm{N}(1)-\mathrm{Cu}(1)-\mathrm{N}(2)$	92.98(13)	$\mathrm{O}(1)-\mathrm{Cu}(1)-\mathrm{N}(2)$	163.34(14)
$\mathrm{N}(3)-\mathrm{Cu}(1)-\mathrm{O}\left(3^{\prime}\right)$	82.1(2)	$\mathrm{N}(1)-\mathrm{Cu}(1)-\mathrm{O}\left(3^{\prime}\right)$	82.9(2)
$\mathrm{N}(2)-\mathrm{Cu}(1)-\mathrm{O}\left(3^{\prime}\right)$	153.2(2)	$\mathrm{N}(3)-\mathrm{Cu}(1)-\mathrm{Cl}(1)$	99.69(14)
$\mathrm{N}(1)-\mathrm{Cu}(1)-\mathrm{Cl}(1)$	103.10(14)	$\mathrm{O}(1)-\mathrm{Cu}(1)-\mathrm{Cl}(1)$	62.88(13)
$\mathrm{N}(2)-\mathrm{Cu}(1)-\mathrm{Cl}(1)$	100.53(11)	$\mathrm{O}\left(3^{\prime}\right)-\mathrm{Cu}(1)-\mathrm{Cl}(1)$	106.2(2)
$\mathrm{N}(6)-\mathrm{Cu}(2)-\mathrm{N}(4)$	157.4(4)	$\mathrm{N}(6)-\mathrm{Cu}(2)-\mathrm{O}\left(2^{\prime}\right)$	82.8(2)
$\mathrm{N}(4)-\mathrm{Cu}(2)-\mathrm{O}\left(2^{\prime}\right)$	82.1(2)	$\mathrm{N}(6)-\mathrm{Cu}(2)-\mathrm{N}(5)$	92.22(13)
$\mathrm{N}(4)-\mathrm{Cu}(2)-\mathrm{N}(5)$	92.68(14)	$\mathrm{O}\left(2^{\prime}\right)-\mathrm{Cu}(2)-\mathrm{N}(5)$	150.8(2)
$\mathrm{N}(6)-\mathrm{Cu}(2)-\mathrm{O}(1)$	90.3(2)	$\mathrm{N}(4)-\mathrm{Cu}(2)-\mathrm{O}(1)$	90.7(2)
$\mathrm{N}(5)-\mathrm{Cu}(2)-\mathrm{O}(1)$	164.64(14)	$\mathrm{N}(6)-\mathrm{Cu}(2)-\mathrm{Cl}(1)$	102.77(14)
$\mathrm{N}(4)-\mathrm{Cu}(2)-\mathrm{Cl}(1)$	97.8(2)	$\mathrm{O}\left(2^{\prime}\right)-\mathrm{Cu}(2)-\mathrm{Cl}(1)$	107.4(2)
$\mathrm{N}(5)-\mathrm{Cu}(2)-\mathrm{Cl}(1)$	101.72(11)	$\mathrm{O}(1)-\mathrm{Cu}(2)-\mathrm{Cl}(1)$	62.96(13)
$\mathrm{Cu}(2)-\mathrm{Cl}(1)-\mathrm{Cu}(1)$	104.82(11)	$\mathrm{C}(11)-\mathrm{N}(1)-\mathrm{Cu}(1)$	119.3(3)
$\mathrm{C}(1)-\mathrm{O}(1)-\mathrm{Cu}(1)$	116.1(2)	$\mathrm{C}(1)-\mathrm{O}(1)-\mathrm{Cu}(2)$	114.5(2)
$\mathrm{Cu}(1)-\mathrm{O}(1)-\mathrm{Cu}(2)$	129.3(2)	$\mathrm{C}(1)-\mathrm{O}(2)-\mathrm{Cu}\left(2^{\prime}\right)$	130.4(4)
$\mathrm{C}(1)-\mathrm{O}(3)-\mathrm{Cu}\left(1^{\prime}\right)$	131.3(4)	$\mathrm{O}\left(3^{\prime}\right)-\mathrm{C}(1)-\mathrm{O}\left(2^{\prime}\right)$	139.3(3)
$\mathrm{O}(3)-\mathrm{C}(1)-\mathrm{O}(2)$	139.3(3)	$\mathrm{O}\left(3^{\prime}\right)-\mathrm{C}(1)-\mathrm{O}\left(1^{\prime}\right)$	110.9(3)
$\mathrm{O}\left(2^{\prime}\right)-\mathrm{C}(1)-\mathrm{O}\left(1^{\prime}\right)$	109.4(3)	$\mathrm{O}(3)-\mathrm{C}(1)-\mathrm{O}(1)$	110.9(3)
$\mathrm{O}(2)-\mathrm{C}(1)-\mathrm{O}(1)$	109.4(3)		

Symmetry transformations used to generate equivalent atoms: $\mathrm{i}-\mathrm{x}+\frac{3}{2}$ $-y+\frac{1}{2^{\prime}}-z$. (') $-x+1,-y+1,-z$.

M agnetic results

Plots of $\chi_{\mathrm{m}} \mathrm{Vs}$. T (where χ_{m} is the molar susceptibility) for compounds $\mathbf{1 - 3}$ are shown in F ig. 4. For $\mathbf{1}$ the χ_{m} value of 4.0×10^{-3} $\mathrm{cm}^{3} \mathrm{~mol}^{-1}$ at room temperature increases continuously when the temperature decreases, giving a maximum of 12.9×10^{-3} $\mathrm{cm}^{3} \mathrm{~mol}^{-1}$ at 30 K , decreasing quickly close to zero at 4 K , and then increasing slightly due to the presence of a small quantity

Fig. 4 A plot of χ_{m} vs. T for compounds $\mathbf{1}(\square), \mathbf{2}\left(^{*}\right)$ and $\mathbf{3}(\boldsymbol{\bullet})$. Solid lines show the best fit obtained (see text)

of paramagnetic impurities. This behaviour indicates a global antiferromagnetic coupling between the copper(II) ions. Compounds 2 and 3 show similar behaviour: 3.8×10^{-3} and $4.2 \times 10^{-3} \mathrm{~cm}^{3} \mathrm{~mol}^{-1}$ at room temperature for 2 and 3 respectively, a maximum of $17.8 \times 10^{-3} \mathrm{~cm}^{3} \mathrm{~mol}^{-1}$ at 23 K and $13.5 \times 10^{-3} \mathrm{~cm}^{\mathbf{3}} \mathrm{mol}^{-1}$ at 31 K for $\mathbf{2}$ and $\mathbf{3}$ respectively, a minimum at 5 K for 2 (9 K for $\mathbf{3}$) and a slight increase due to the presence of a small quantity of paramagnetic impurities.

The experimental data were fitted to the expression derived from the Hamiltonian $H=-2 J_{12} S_{1} \cdot S_{2}-2 j_{13}$ $\left(S_{1} \cdot S_{3}+S_{2} \cdot S_{4}\right)-2 J_{14} \quad\left(S_{1} \cdot S_{4}+S_{2} \cdot S_{3}\right)-2 J_{34} S_{3} \cdot S_{4}, \quad$ which corresponds to a tetrameric array of spins. ${ }^{16}$ The expression was also corrected with a ρ paramagnetic impurity parameter in order to fit the low-temperature data resulting in equation (1).

$$
\begin{aligned}
& \chi_{m}=\frac{0.37515 g^{2}}{T}\left[(1 - \rho) \left(10 e^{\frac{\left(J_{12}+J_{34}\right) / 2+\left(J_{14}+J_{13}\right)}{0.69504 \mathrm{~T}}}+\right.\right.
\end{aligned}
$$

$$
\begin{aligned}
& \left.2 \mathrm{e}^{\frac{-\left(\mathrm{J}_{12}+\mathrm{J}_{34} / 2-\sqrt{(12}--\mathrm{J}_{34}\right)^{2}+\left(\jmath_{14}-\mathrm{J}_{13}\right)^{2}}{0.69504 \mathrm{~T}}}\right) /\left(5 \mathrm{e}^{\frac{\left(\mathrm{J}_{12}+\mathrm{J}_{34} 1 / 2+\left(\mathrm{J}_{14}+\mathrm{J}_{13}\right)\right.}{0.69504 \mathrm{~T}}}+\right.
\end{aligned}
$$

$$
\begin{align*}
& \left.e^{\left.\frac{-\left(\jmath_{12}+\jmath_{34} / 2-\left(\jmath_{14}+\jmath_{13}\right)-\sqrt{\left(\jmath_{12}+\jmath_{34}-\jmath_{14}-\jmath_{13}\right)^{2}+3\left(\jmath_{14}-\jmath_{13}\right.} \overline{2}\right.}{0.69504 \mathrm{~T}}\right)}+\rho\right] \tag{1}
\end{align*}
$$

The exchange interactions and the atom labelling scheme are illustrated in Fig. 5. The best fit parameters, using as a criterion of best fit the minimum value of $\mathrm{R}=\Sigma\left(\chi_{\mathrm{m}}{ }^{\text {calc }}-\chi_{\mathrm{m}}{ }^{\text {obs }}\right)^{2}$ / $\Sigma\left(\chi_{\mathrm{m}}{ }^{\text {obs }}\right)^{2}$, were: 2J ${ }_{12}=-275(14), 2 j_{34}=-31(4), 2 j_{14}=-57(10)$,

J_{12}

J_{13}

J_{34}

J_{14}

Fig. 5 Exchange interactions and atom labelling scheme for the four operative exchange pathways in compounds 1-3

2) ${ }_{13}=-8(8) \mathrm{cm}^{-1}, \mathrm{~g}=2.03(1), \rho=5(8) \times 10^{-4}$ with $\mathrm{R}=1.7 \times$ 10^{-5} for $1 ; 2 \jmath_{12}=-390(12), 2 J_{34}=-26(7), 2 J_{14}=-10(12)$, 2) ${ }_{13}=22(10) \mathrm{cm}^{-1}, \mathrm{~g}=2.09(1), \rho=1.4(5) \times 10^{-2}$ with $\mathrm{R}=2 \times$ 10^{-5} for 2; and 2J ${ }_{12}=-212(8), 2 J_{34}=-26(3), 2 J_{14}=-72(9)$, 2) ${ }_{13}=-20(7) \mathrm{cm}^{-1}, \mathrm{~g}=2.12(1), \rho=5(7) \times 10^{-3}$ with $\mathrm{R}=5.9 \times$ 10^{-4} for 3 . The $2 J_{12}$ and $2 \int_{34}$ values are reliable because they are determined by the shape of the χ_{m} vs. T curve, mainly in the high-temperature region, and the maximum of the curve respectively whereas the 2J ${ }_{14}$ and $2 J_{13}$ values are slightly sensitive to the shape or the maximum of the curve and their values are poorly determined, reflecting the difficulty of including six parameters in the regression analysis.

From the best fit parameters, the most efficient superexchange pathway in 1-3 is that corresponding to J_{12} : two copper(II) atoms bridged by one 0 (carbonate) and one halide. The participation of the bridging halide in the superexchange pathway should be negligible because it is placed on the apical position of the square pyramidal polyhedron around the copper(II) atoms. The ${ }_{12}$ superexchange pathway may be related to the diamagnetic dinuclear μ_{2}-carbonate compounds $\left[\left(\mu_{2}-\mathrm{CO}_{3}\right)\left\{\mathrm{Cu}_{2}-\right.\right.$ $\left.\left.(\mathrm{L})_{2}\right\}\right][\mathrm{ClO}]_{2} \cdot \mathrm{dmf}^{8}$ and $\left[\left(\mu_{2}-\mathrm{CO}_{3}\right)\left\{\mathrm{Cu}_{2}(\mathrm{tmpn})_{2} \mathrm{Cl}_{2}\right\}\right]^{9} \quad$ (tmpn $=$ $\mathrm{N}, \mathrm{N}, \mathrm{N}^{\prime}, \mathrm{N}$ '-tetramethylpropane-1,3-diamine), in which the two copper atoms are bridged by a doubly bidentate carbonato group: when the two copper atoms in the $\mathrm{Cu},($ carbonate $), \mathrm{Cu}$ plane are moved further away from the non-bridging 0 atoms of the carbonate, and the $\mathrm{Cu}-\mathrm{O}-\mathrm{Cu}$ angleis opened, the 2] ${ }_{12} \mathrm{CO}-$ ordination mode is reached. In the diamagnetic dinuclear compounds, the $\mathrm{Cu}-\mathrm{O}$ distances are short and the $\mathrm{Cu}-\mathrm{O}-\mathrm{Cu}$ angles are close to 180° : $176.6(2)^{\circ}$ for $\left[\left(\mu_{2}-\mathrm{CO}_{3}\right)\left\{\mathrm{Cu}_{2}(\mathrm{~L})_{2}\right\}\right]\left[\mathrm{ClO}_{4}\right]_{2} \cdot \mathrm{dmf}^{8}$ and 170.26° for $\left[\left(\mu_{2}-\mathrm{CO}_{3}\right)\left\{\mathrm{Cu}_{2}(\mathrm{tmpn})_{2} \mathrm{Cl}_{2}\right\}\right]$, ${ }^{9}$ adequatefor a good $\mathrm{Cu}-\mathrm{O}-\mathrm{Cu}$ orbital overlap. ${ }^{2 \mathrm{a}}$

In compounds 1,2 and $\mathbf{3}$ the $\mathrm{Cu}-\mathbf{0}$ distances are also short, but the $\mathrm{Cu}(1)-\mathrm{O}(2)-\mathrm{Cu}(2)$ angles are $128.4(4)^{\circ}, 129.3(2)^{\circ}$ and $124.0(4)^{\circ}$ respectively, and the overlap should diminish. For this reason, an antiferromagnetic coupling may be predicted, but with a 2] value lower than that found in $\left[\left(\mu_{2}-\mathrm{CO}_{3}\right)\right.$ $\left.\left\{\mathrm{Cu}_{2}(\mathrm{~L})_{2}\right\}\right]\left[\mathrm{ClO}_{4}\right]_{2} \cdot \mathrm{dmf}^{8}$ or $\left[\left(\mu_{2}-\mathrm{CO}_{3}\right)\left\{\mathrm{Cu}_{2}(\mathrm{tmpn})_{2} \mathrm{Cl}_{2}\right\}\right] .{ }^{9}$ The 2) 12 values of $-275(14),-390(12)$ and $-212(8) \mathrm{cm}^{-1}$ for $\mathbf{1}, 2$ and $\mathbf{3}$ respectively are as expected. The superexchange pathway corresponding to J_{34}, two copper(II) atoms bridged by a syn-syn carboxylato group, may also be predicted to be antiferromagnetic by analogy with copper acetate derivatives and related complexes, ${ }^{17-19}$ but the value of the coupling constant should be lower due to the decreasing number of carboxylate bridges from four to one ${ }^{20}$ The 2J ${ }_{34}$ values are $-31(4),-26(7)$ and $-26(3) \mathrm{cm}^{-1}$ for 1,2 and 3 respectively. The sign of the superexchange pathway corresponding to J_{13}, two copper(II) atoms bridged by a syn-anti carboxylato group, is difficult to
predict but the value should be low: ${ }^{21,22} 2 J_{13}=-8(8)$ for 1 $+22(10)$ for 2 and $-20(7) \mathrm{cm}^{-1}$ for 3 . The superexchange pathway corresponding to ${ }_{14}$, two copper(II) atoms bridged by an anti-anti carboxylato group, has been measured for the dinuclear carbonato compound $\left[\left(\mu_{2}-\mathrm{CO}_{3}\right)\left\{\mathrm{Cu}_{2}(\text { bipy })_{4}\right\}\right]\left[P F_{6}\right]_{2} \cdot 2 \mathrm{dmf}$ (bipy $=4,4^{\prime}$-bipyridine), ${ }^{29}$ which displays antiferromagnetic coupling with a 2J value of $-140.5 \mathrm{~cm}^{-1}$. The 2J ${ }_{14}$ values of $-57(10),-10(12)$ and $-72(9) \mathrm{cm}^{-1}$ for $\mathbf{1 , 2} 2$ and $\mathbf{3}$ respectively, taking into account the structural differences and the certain indeterminacy of $2{ }^{14}$, are in accordance with this value.

C onclusion

From the synthetic point of view, the strategy to achieve trinuclear μ_{3}-carbonato-copper(II) derivates is to use copper(II) salts of poorly co-ordinative anions such as nitrate or perchlorate, tridentate amines (e.g. bapa, bapma or pip) and atmospheric CO_{2} or $\mathrm{K}_{2} \mathrm{CO}_{3}$. In contrast, if the starting salt is a copper(II) halide (chloride or bromide), with the same reagents and method, the resulting compound is a μ_{4}-carbonato tetranuclear copper(II) derivative with two bridging halides.

In this work we have shown two examples of μ_{4}-carbonato tetranuclear copper(II) compounds. The magnetic behaviour of these compounds has been magnetically studied by using the expression derived from the Hamiltonian $\mathrm{H}=-2 \mathrm{~J}_{12}$ $\mathrm{S}_{1} \cdot \mathrm{~S}_{2}-2 \mathrm{~J}_{13} \quad\left(\mathrm{~S}_{1} \cdot \mathrm{~S}_{3}+\mathrm{S}_{2} \cdot \mathrm{~S}_{4}\right)-2 \mathrm{~J}_{14} \quad\left(\mathrm{~S}_{1} \cdot \mathrm{~S}_{4}+\mathrm{S}_{2} \cdot \mathrm{~S}_{3}\right)-$ 2] ${ }_{34} S_{3} \cdot S_{4}$, which corresponds to a tetrameric array of spins. The values of $2 J_{12}$ and $2 \int_{34}$ can be determined with precision but $2 J_{14}$ and $2 J_{13}$ are sensitive to the shape or the maximum of the curve (χ_{m} vs. T) and their values are poorly determined.

Acknowledgements

This work was supported financially by the Comisión Interministerial de Ciencia y Tecnología (PB93/0772 grant). E. P. thanks Comissió Interdepartamental de Recerca i Tecnologia (G eneralitat de Catalunya) for a doctoral fellowship.

References

[^0]K. J. Berry and K. S. M urray, Inorg. C hem., 1995, 34, 4808; (h) A. L. R heingold, B. S. H aggerty and S. Trofimenko, A ngew. Chem., Int. Ed. Engl., 1994, 33, 1983
3 R. K empe, J. Sieler, D. Walther, J. Reinhold and K. Z. Rommel, Z. A norg. Allg. Chem., 1993, 619, 1105; H. H arada, M . K odera, G. VucK ovic, N. M atsumoto and S. K ida, Inorg. Chem., 1991, 30, 1190; N. A rulsamy, P. A. Goodson, D. J. Hodgson, G. Glerup and K. M ichelsen, Inorg. Chim. A cta, 1994, 216, 21; L. Spiccia, G. D. Fallon, A. M arkiewicz, K. S. M urray and H. Riesen, Inorg. Chem., 1992, 31, 1066
4 (a) G. K olks, S. J. Lippard and J. V. Waszczak, J. Am. Chem. Soc., 1980, 102, 4832; (b) C. Bazzicalupi, A. Bencini, A. Bianchi, V. Fusi, P. Paoletti and B. Valtancoli, J. Chem. Soc., Chem. Commun., 1995, 1555; (c) A. E scuer, R. Vicente, E. Peñalba, X. Solans and M . FontB ardía, Inorg. Chem., 1996, 35, 248; (d) A. E scuer, R . Vicente, S. B. K umar, X. Solans and M. Font-Bardía, Inorg. Chem., 1996, 35, 3094; (e) C. Bazzicalupi, A . Bencini, A . Bianchi, F. Corana, V. Fusi, C. Giorgi, P. Paoli, P. Paoletti, B. Valtancoli and C. Zanchini, Inorg. C hem. 1996, 35, 5540; (f) A. Escuer, R. Vicente, S. B. Kumar, X. Solans and M. Font-Bardía, J. Chem. Soc., D alton Trans., 1997, 403.

5 (a) F. W. B. Einstein and A. C. Willis, Inorg. Chem., 1981, 20, 609; (b) R . A lvarez, J. L. A twood, E. Carmona, P. J. Perez, M . L. Poveda and R. D. Rogers, Inorg. Chem., 1991, 30, 1493.
6 J. Sletten, A cta Chem. Scand., Ser. A, 1984, 38, 491; D. Y. Jeter, D. J. H odgson and W. E. H atfield, Inorg C hem., 1972, 11, 185.

7 P. C. Healy and A. H. White, J. Chem. Soc., D alton Trans., 1972, 1913; P. D. Brotherton and A. H. White, J. Chem. Soc., Dalton Trans., 1973, 2338; A.K. G regson and P. C. Healy, Inorg. Chem., 1978, 17, 2969
8 A. R. Davis, F. W. B. Einstein, N. F. Curtis and J. W. L. M artin, J. A m. C hem. Soc., 1978, 100, 6258.

9 M. R. Churchill, G. Davies and M. El-Sayed, Inorg. Chem., 1979, 18, 2299.
10 N. F. Curtis, R. W. H ay and Y. M . Curtis, J. C hem. Soc. A , 1968, 182.
11 A. C. T. N orth, D. C. Phillips and F. C. M atthews, A cta C rystallogr., Sect. A, 1968, 24, 351.
12 G. M. Sheldrick, A cta. C rystallogr., Sect. A, 1990, 46, 467.
13 G. M. Sheldrick, SH ELX L 93, U niversity of G öttingen, 1993.
14 International Tables for X-Ray Crystallography, Kynoch Press, Birmingham, 1974, vol. 4, pp. 99-110 and 149
15 C. K. Johnson, ORTEP, Report OR NL-5138, Oak Ridge National Laboratory, Oak Ridge, TN, 1976.
16 W. E. H atfield and G. W. Inman, Inorg. Chem., 1969, 8, 1376.
17 P. de M eester, S. R. Fletcher and A. C. Skapsky, J. Chem. Soc., D alton Trans., 1973, 2575.
18 H. U. G udel, A . Stebler and A . F urrer, Inorg. C hem., 1979, 18, 1021.
19 B. Chiari, O. Piovesana, T. Tarantelli and P. F. Zanazzi, Inorg. C hem., 1993, 32, 4834.
20 A . N eels, H. Stoeckli-E vans, A . Escuer and R. Vicente, unpublished work.
21 E. Colacio, J. M. Dominguez-Vera, R. K ivekäs, J. M. M oreno, A. Romerosa and J. Ruiz, Inorg. C him. A cta, 1993, 212, 115.

22 R. L. Carlin, K. K opinga, O. K ahn and M.Verdaguer, Inorg. Chem., 1986, 25, 1786.

Received 18th February 1997; Paper 7/01138E

[^0]: 1 D. A. Palmer and R. V. Eldik, Chem. Rev., 1983, 83, 651.
 2 (a) J. Sletten, H. Hope, M. Julve, O. K ahn, M. Verdaguer and A . D workin, Inorg. C hem., 1988, 27, 542; (b) Z. Tyeklar, P. P. Partha, R. Jacobson, A . Farooq, K. D. K arlin and J. Zubieta, J. A m. C hem. Soc., 1989 111, 388; (c) N. K itajima, T. K oda, S. H ashimoto, T. K itagawa and Y. M oro-oka, J. A m. Chem. Soc., 1991, 113, 5664; (d) N. K itajima, S. Hikichi, M. Tanaka and Y. M oro-oka, J. Am. Chem. Soc., 1993, 115, 5496; (e) A. L. Brenk, K. A. Byriel, D. P. Fairlie, L. R. Gahan, G. R. H anson, C. J. Hawkins, A. Jones, C. H. L. K ennard, B. M oubaraki and K. S. M urray, Inorg. Chem. 1994, 33, 3549; (f) T. N. Sorrell, W. E. A llen and P. S. White, Inorg. Chem., 1995, 34, 952; (g) P. E. K ruger, G. D. Fallon, B. M oubaraki,

